What is Fuzzy Matching?

Why CPAs Should Know About This Powerful Tool

DOWNLOAD PDF

TECHNOLOGY ISSUES

By Shivam Arora, CPA

In accounting, we regularly encounter situations where work is being performed manually and there is substantial scope of automation. For example, a CPA was downloading sales tax permits for their client’s vendors to perform scoping for potential tax refunds. After downloading a permit, they would move it manually to the respective vendor’s folder.

This process, they complained, took hours of their time, especially since multiple state permits had to be downloaded per vendor. However, the even more frustrating fact was that all file names “almost” contained their vendor’s name, with omissions of letters and additions of special characters that did not seem to follow any one pattern.

This is a common problem. There are many business cases where practitioners spend time over text matching tasks that are intuitively obvious but do not follow a pattern and therefore, must be performed manually. Fortunately, solutions exist, such as fuzzy matching.

RELATED CPE:

Artificial Intelligence for Accounting and Financial Professionals

Fuzzy Matching

Fuzzy matching encompasses an umbrella of statistical techniques that compare and match approximately equal strings. These techniques employ statistical rules to arrive at a relative degree of truth on the similarity between two strings, in contrast to a Boolean approach, which uses a separate, hard-coded format for each task to provide a Yes/No answer.

The concept of fuzzy matching is analogous to the substance over form principle in accounting. It’s the same reason why passthrough entities do not pay income tax even though they are technically separate legal entities to their owners or why the IRS sometimes classifies unusually large salary payments to owners as dividends even though they are technically salary payments.

Fuzzy matching, like these cases, gives preference to substantial equivalence between strings over their technical form.

The Underlying Logic

There are several approaches available to fuzzy match data, but I'm going to go briefly over the most common one. The Levenshtein Distance (LD) is commonly used to establish similarity between two strings. It is the minimum number of single character edits that are required for changing either of the two strings into the other. An edit can refer to a character’s insertion, deletion or replacement. Consider the following strings:

charlie_vendor
$charl_vndr$

Assume that the naming convention of vendors in a system is “{name}_vendor.” It is intuitively obvious that the file downloaded is for the vendor Charlie. However, unless all downloaded files follow the same naming convention as above, a Boolean approach to matching will declare both strings unequal.

When I run LD-based fuzzy matching (LDFM) in Python, I get an LD of 6. This means that the shortest number of single-character changes to exactly match the file name and the vendor’s name is 6. Converting it into the LD ratio (using a formula I will not delve into), I obtain .77.

What I now have is a quantified degree to which both strings are similar: my computer understands that both strings are about 77% similar. It still knows that they are not equal; it has just established equivalence

Applications of Fuzzy Matching in Accounting

There can be several applications of fuzzy matching in accounting. A few of them follow.

File Renaming. As with the above case, fuzzy matching can be used to rename downloaded files and match them to their respective group. Names of files downloaded from the internet often contain either truncated text or unwanted characters.

Support Accounting Processes. Fuzzy matching can support accounting processes such as bank reconciliations, inventory tracking and evidence gathering for various types of audits.

Internal Controls. Fuzzy matching can detect duplicate AP payments with minor variations, compare purchase orders to deliver invoice/bill of lading and enforce data entry checks. In case of fraud, it can also aid in identifying matches across different databases or comparing fraudulent acts across different time periods.

Preprocessing for ML. With the arrival of artificial intelligence, organizations are increasingly utilizing machine learning (ML) techniques. A substantial amount of ML in the financial space occurs on data generated by accounting systems. By facilitating preprocessing of data using fuzzy matching techniques, organizations can develop robust and accurate ML models.

A Coding Exercise

One can perform fuzzy matching in Excel (refer to the article "Excel: Fuzzy Matching" by Bill Jelen in Strategic Finance magazine). Unsurprisingly though, the functionality is extremely limited and there is little clarity on what technique is used. A better alternative may be the programming language Python.

Python is a high-level programming language that is general-purpose; it can be used to code for a wide variety of situations. The beauty of Python is that it is intuitive and relatively easy to learn, which is why it is used extensively in business. It hosts numerous libraries that are specifically designed for business-related tasks.

See this: Fuzzy Matching Exercise

Case Examples

Consider the below as examples of how helpful fuzzy matching can be for accountants and auditors.

1. A CPA is performing a quarter-end bank reconciliation. There are 300+ entries on both sides. The CPA notices that transaction descriptions on bank statements are similar to those in the books, albeit with expected differences such as truncations, word order and unwanted characters. Using LDFM, the CPA can match 270 transaction descriptions between the bank and the books. The CPA also verifies that the corresponding amounts across these transactions are equal.

The CPA now begins to reconcile the remaining few transactions on both sides. Using fuzzy matching has greatly reduced the manual workload.

2. A tax consultant is working on a reverse audit for one of their clients. The consultant must download sales/use tax permits for the client’s 500+ vendors to ascertain the type of permits held in the relevant states.

For simplicity, assume that a single file contains all permits for one vendor. The consultant has an Excel file with a list of all vendors. Instead of manually linking each vendor to their corresponding permit, the consultant employs LDFM. This results in a >90% confidence match for 460 vendors.

After a cursory review of the matches to ensure accuracy, the consultant needs to only focus on the unmatched vendors for linking permits manually. If it takes 30 seconds for the consultant to browse through all permits to find the correct permit for each vendor and they have a code already available to perform LDFM, they have just reduced the task time by close to four hours.

3. One warehouse of a manufacturing company uses LDFM to compare raw materials ordered on a purchase order to those received and listed on the invoice. This helps the warehouse detect not only discrepancies between the quantity of items ordered, but also between their type.

Over the years, the warehouse has been able to reduce purchase return-related costs by up to 40% by refusing delivery of suboptimal orders. You can read the outstanding use case of fuzzy matching in fraud examination in an article written by Ehsanelahi in Data Ladder titled "Fuzzy Matching 101: Cleaning and Linking Messy Data."

A Powerful Tool

Given the nature of accounting work, fuzzy matching techniques can be a powerful tool in a CPA’s arsenal.

Fuzzy matching can be performed in Excel but is much more powerful when performed in a programming language such as Python, which is an intuitive programming language that, in addition to core software development, has extensive use cases in a business setting.

As evident, it is not hard to follow most (if not all) aspects of the Python exercise above even without basic knowledge of the language. CPAs should consider learning a programming language to automate much of the manual tasks they perform.

About the Author: Shivam Arora, CPA, is a data scientist. Arora holds dual master’s degrees: an MS in Accounting and an MS in Business Analytics. As an applied Artificial Intelligence (AI) consultant at one of the largest consulting firms in the world, Arora specializes in applied AI for accounting and finance. Research interests include financial modeling and statistical relationships in the financial markets, application of AI to accounting and Robotic Process Automation (RPA). Email shivam.arora@mavs.uta.edu.

 

 

  • TXCPA’s 2025 Rising Stars

    TXCPA’s Rising Stars Program honors 16 exceptional CPA members under 40 who are making a significant impact in the profession and their communities. These honorees exemplify leadership, innovation, and a commitment to making a difference.
    View Article
  • CPE: Information Security Plans for Tax Professionals: A Review of Existing Guidance

    This article reviews the essential information security responsibilities of tax professionals and CPA firms amid growing cybersecurity threats. It outlines key IRS and FTC requirements, and offers practical steps for safeguarding taxpayer data, detecting and responding to breaches, and complying with data privacy laws.
    View Article
  • Top 10 Estate Planning Topics in Texas in 2025: A Scholarly Perspective

    This article highlights 10 key issues shaping estate planning in Texas. As a client's needs grow more complex, Texas CPAs play a critical role in guiding them with expertise, foresight and personalized strategies.
    View Article
  • The PCC’s 2025 Priorities: Advising FASB on Private Company Issues

    In 2025, the Private Company Council continued its work advising the Financial Accounting Standards Board on financial reporting issues affecting private companies. PCC Chair Jere Shawver discusses key accomplishments and what's ahead.
    View Article
  • Legislative Wins Reshape CPA Licensure and Mobility in Texas

    TXCPA achieved major legislative wins in the 89th Texas Legislature, including creation of a new CPA licensure pathway and modernizing practice mobility. These victories highlight our leadership in opening new doors for current and future CPAs.
    View Article
  • What’s Happening Around Texas - November-December 2025

    TXCPA chapters across Texas hosted events supporting education, professional growth and community engagement. Highlights include Corpus Christi’s school supply drive, Dallas’s behind-the-scenes Meyerson Symphony Center tour, East Texas’s Leadership Day, and San Antonio’s Beta Alpha Psi Competition and Accounting Educators Mixer.
    View Article
  • IAASB Approves New Standard on Sustainability Assurance

    The IAASB approved ISSA 5000, the first comprehensive global standard for sustainability assurance, effective for periods beginning December 15, 2026. The principles-based standard applies to all ESG topics, introduces the concept of double materiality, and allows for limited or reasonable assurance engagements.
    View Article
  • Our Rising Stars Shine Brightly

    TXCPA Chair Billy Kelley highlights the November/December issue of Today’s CPA, where we celebrate TXCPA’s Rising Stars - emerging leaders shaping the profession’s future. He also discusses the articles on estate planning, sustainability standards, information security, and TXCPA advocacy, plus chapter updates as members close out the year.
    View Article
  • Automation and AI and its Impact on the Future of Accounting

    Automation and artificial intelligence are revolutionizing accounting by streamlining tasks, improving accuracy and enhancing decision making. While offering efficiency and strategic benefits, these technologies also raise challenges around ethics, data privacy and workforce skills.
    View Article
  • PCAOB Adopts New Audit Firm and Engagement-Level Metrics Disclosures

    PCAOB's Release No. 2024-002 introduces new firm-level and engagement-level audit metrics to increase transparency and provide more decision-useful information. While broadly supporting the goal, stakeholders raised concerns about high compliance costs, a limited link to audit quality and potential negative impacts on smaller firms.
    View Article
  • Take Note

    In this edition of Take Note: November is Accounting Opportunities Month and TXCPA Month of Service; Member Insurance Program Provides Exclusive Benefits; Midyear Leadership Council Meeting is January 22-23; Support Through ACAN; TXCPA’s Career Center
    View Article
  • Classifieds

    The classified ad section features listings for practice sales, firm buyers and specialized services. Whether you're expanding, selling or exploring niche opportunities, these ads connect you to valuable prospects and resources.
    View Article

CHAIR
Mohan Kuruvilla, Ph.D., CPA

PRESIDENT/CEO
Jodi Ann Ray, CAE, CCE, IOM

CHIEF OPERATING OFFICER
Melinda Bentley, CAE

EDITORIAL BOARD CHAIR
Jennifer Johnson, CPA

MANAGER, MARKETING AND COMMUNICATIONS
Peggy Foley
pfoley@tx.cpa

MANAGING EDITOR
DeLynn Deakins
ddeakins@tx.cpa

COLUMN EDITOR
Don Carpenter, MSAcc/CPA

DIGITAL MARKETING SPECIALIST
Wayne Hardin, CDMP, PCM®

CLASSIFIEDS
DeLynn Deakins

Texas Society of CPAs
14131 Midway Rd., Suite 850
Addison, TX 75001
972-687-8550
ddeakins@tx.cpa

 

Editorial Board
Derrick Bonyuet-Lee, CPA-Austin;
Aaron Borden, CPA-Dallas;
Don Carpenter, CPA-Central Texas;
Rhonda Fronk, CPA-Houston;
Aaron Harris, CPA-Dallas;
Baria Jaroudi, CPA-Houston;
Elle Kathryn Johnson, CPA-Houston;
Jennifer Johnson, CPA-Dallas;
Lucas LaChance, CPA-Dallas, CIA;
Nicholas Larson, CPA-Fort Worth;
Anne-Marie Lelkes, CPA-Corpus Christi;
Bryan Morgan, Jr, CPA-Austin;
Stephanie Morgan, CPA-East Texas;
Kamala Raghavan, CPA-Houston;
Amber Louise Rourke, CPA-Brazos Valley;
Shilpa Boggram Sathyamurthy, CPA-Houston, CA
Nikki Lee Shoemaker, CPA-East Texas, CGMA;
Natasha Winn, CPA-Houston.

CONTRIBUTORS
Melinda Bentley; Kenneth Besserman; Kristie Estrada; Holly McCauley; Craig Nauta; Kari Owen; John Ross; Lani Shepherd; April Twaddle; Patty Wyatt